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Compensating Vectors for Differences in 
Earth Representation Between Host and 

Image Generator

The Warfighter Training Research Division (WTRD) of AFRL is at the former 
Williams AFB in Mesa, Az, now Williams Gateway Airport. The vision of the 
WTRD is to provide the world’s best training tools, ensuring that warfighters have 
the skills to win.

The contactor team consists of Lockheed Martin, Boeing and the Link Simulation & 
Training Division of L3 Communications.  L3 pays my salary.  However, most 
people believe that they work for the Lab regardless of the paycheck source.

I work primarily for a WTRD advanced simulation group tasked to develop 
commercial technologies and innovative software engineering approaches designed 
to significantly reduce costs and enhance fidelity.  This group has produced 
innovations in COTS processors, re-host of embedded aircraft software, replacement 
of custom input/output systems with low cost COTS, and addressed network delays, 
time stamping, and coordinate transformations.

This talk describes problems making a Maverick electro optical or IR simulation hit 
the target regardless of the Image Generator (IG) earth representation.  The 
problems were fixed by making vector calculations in the host account for 
differences in earth representation between the host calculations and the IG.
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Real World Pre-Launch

Seeker tr acks  target imagery
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Real World Post-Launch

Continues tracking imagery 
until miss or impact

The above slides show the Maverick seeker tracking the target 
imagery both pre launch and during flyout. 
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Simulation Pre-Launch

Seeker tr acks  target imagery

IG uses l aser rangefi nder feature to 
return range and either terrain code 
or Target ID#
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Simulation Post-Launch

Flies to locati on determined at launch

or

Chooses  
target id # 
at launch 
and flies to 
its location

On the simulator we use an IG sensor channel dedicated to the Maverick while it is 
still on the aircraft.  In principle we could keep the sensor channel dedicated to the 
Maverick after launch, in which case the Maverick would continue to track the 
imagery in a realistic way until striking or missing the desired target.

Unfortunately, after launch the sensor channel is needed elsewhere.  This prevents 
the Maverick from tracking the target image to impact, so we must be creative 
(cheat) to complete the flyout.

The above slides show the Maverick seeker tracking the target imagery and using 
the IG laser rangefinder feature to receive range and either  terrain code or target 
ID# pre-launch. After launch the Maverick maneuvers towards a model or 
geographic location determined at launch.

The decision whether to follow the position of a model of known ID, or to fly to a 
fixed location is based upon the algorithm in the next slide.
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Simulated Maverick Flight Guidance 
Decision at Launch

if (IG returns a model ID#)
{

this is ID# of  model to f ollow after launch
}
else
{ /* IG returns range and terrain code */

use find_tgt_near_mav_gates to f ind ID of  model with LOS closest to seeker
if (closest LOS is inside tracking gates)
{

this is ID# of  model to f ollow after launch
}
else
{

use get_tgt_posn to f ind location of  end of  seeker LOS at launch
this is location to try  to fly  to af ter launch

}
}

If the IG returned a model ID #, the missile tries to follow that model position after 
launch.

Otherwise the host determines the ID # of that target with LOS closest to that of the 
seeker.  If the target LOS is inside the seeker tracking gates the missile tries to fly to 
the known location of the model, even as it changes.

Otherwise the location of the end of the seeker LOS is calculated from the range and 
alignment, and the missile tries to fly there.
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Initial Maverick Vector Work

Use seeker LOS to find ID # of closest model LOS 
or find location of end of LOS vector

• Worked in ge ode tic coordinates
• Used fee t/degree N or S at 

seeker to conv ert v ectors to 
geode tic increments or v ice 
v ersa

• Good enough out-the -window
• Miss with Mav erick

Total 
horizontal 
vec tor

Seeker 
(lat,lon)

Locati on 
(lat + ∆lat, 
lon + ∆lon)

∆lat=∆N* 
(deg / ft_n)

∆lon=∆E* (deg / ft_e)

The slide shows that initially we used simple feet per degree North and East 
relationships to convert the sensor LOS vector into latitude and longitude 
increments or vice versa.  In the past these algorithms have been satisfactory for out-
the window work.  However, when combined with relatively long range and the 
effectively high magnification of the narrow FOV seeker, these algorithms gave 
errors that could cause the missile to miss the target.
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Success with F-16 Simulator Integrated 
with E&S IG Flat Earth

• Do host calculations in 
same map as IG

• Project seeker location 
into map

• Project seeker_to_target 
v ector into ma p, hence 
target location

• Inv ert map projection to 
find targe t geodetic 
coordinates

Lambert confor med conic  pr ojecti on of WGS- 84

Missile flight

Initial vector 
to target

The fix for our immediate problem with an F-16 simulator integrated with an E&S 
IG was to do the host vector calculations in the same map projection as the IG, a 
Lambert Conformal Conic projection of the WGS-84 spheroid.

We project the sensor geodetic location into the map.  With the seeker-to-target 
vector we can calculate the target location in the map, and convert back into 
geodetic coordinates.  We cannot go wrong!
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Success Continued with Flight Guidance 
Decision copied onto

A-10 Host Integrated with E&S Flat Earth IG

Host and IG use WGS-84 
Lambert Conformal Conic

Success with many databases 
representing different locations

After development on an F-16, the Maverick software was implemented 
successfully on an A-10 FMT integrated with an E&S IG using a WGS-84 Lambert 
Conic Projection.

We had success with different databases representing different locations.

Then we integrated with an SE200 IG
and

immediately had problems hitting the target:
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Flight Guidance Decision 
FAILURE TO FIND TARGET when A-10 

Integrated with Spherical Earth IG

Host calcul ati ons 
in Lambert C onic 

of WGS-84

IG display based on 
Spherical Earth M odel 
(R = 20,890,377.0 ft)

After pacing the floor for a bit, we realized the problems resulted from the IG 
spherical earth differing from the host flat earth in two important ways.
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Discrepancies between IG Sphere 
and Host Flat Earth

Feet per deg l at  or l ong 
not al ways same as  
WGS- 84 or  map ther eof

44- ft dr op (1 mil) 
at 6.9 nm 
(drop α range2)

6.9 nm

Flat Earth
Curv ed Earth

The first cause of the problem was that the curved earth MSL drops away from the 
observer’s local horizontal.  The drop is about 44 feet at a horizontal range of about 
6.9 nm, and is proportional to the square of the horizontal range.

The second cause was that the feet per degree of latitude and longitude can differ 
significantly from the values on a WGS-84 spheroid or a projection thereof.

To confirm our suspicions, we needed to derive some equations and calculate some 
values. 
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Dimensions and Equations for Scale of 
Spherical Earth Surface Relative to WGS-84

( )
2

5.122

1
sin1
e

e
a
R

nscalesphere −
×−

×=
φ

φ22 sin1 ×−×= e
a
Rescalesphere

R spherical earth radius 20,890,377.0 f eet
e2 WGS-84 eccentricity 2 0.00669437999
a WGS-84 equatorial radius 20925646.33 f eet
φ Latitude

The equations and dimensions in the above slide were used to produce the following 
table. 
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Tabulation of Northerly and Easterly Scales of 
Spherical Earth to Surface Relative to WGS-84

φ

Latitud e φ nscalesphere escalesphere nscale/escale

00 1.005043 0.998315 1.0067

150 1.004367 0.998091 1.0063

300 1.002521 0.997479 1.0051

450 1.000001 0.996643 1.0034

600 0.997483 0.995806 1.0017

750 0.995640 0.995192 1.0005

900 0.994968 0.994968 1.0

Maxi mum bearing err or is 3.35 mil, at Equator.

Sphere (R = 20, 890,370.0 ft) Scales Versus La titude

The table above shows that the Northerly and Easterly map scales on the sphere 
differ significantly not only from 1.0, but also from each other.

Compared with a WGS-84 reference spheroid it is clear that there will be a 
significant difference in the vectors connecting two points of specified geodetic 
coordinates.  The differences in the northerly and easterly components would cause 
corresponding differences in range and bearing.

At a given latitude, the bearing errors are worst near the inter-cardinal points   The 
larger the difference between the northerly and easterly scales, the greater the error 
in bearing.  The worst bearing errors would occur at the equator where northerly 
components are too long by 5.0 parts in 1000 and easterly components too short by 
1.7 parts in 1000, causing bearing errors of up to 3.35 mil.

Bearings will be correct near the Poles but ranges will be short by 5 parts in 1000. 
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Vector Discrepancies Between WGS-84 
Flat Earth Host and Spherical IG

Vector to location in IG is not same as vector to corresponding 
location in host, if host and IG earth representation differ

To use vector from IG in host calculations, it must be 
compensated for how it would appear in host, and vice versa. Use:

comp_host2ig comp_ig2host

Elevation view Plan view
Seeker

LOS i n host

LOS i n IG

True Nor th

LOS vec tor  in IG

LOS vec tor  in hos tSeeker

Host fl at terr ain

IG spherical terr ain

The slide shows plan and elevation views of the seeker-to-target vector in both a flat 
earth IG and a spherical earth IG.  The depression to the target is obviously greater 
on the spherical earth than on the flat earth.  The bearing relative to true North and 
the range can also differ due to scale differences.

Therefore vectors from the host must be compensated for comparison with vectors 
in the IG earth representation, and vectors from the IG must be compensated for use 
in the host earth representation.  Use functions comp_host2ig and comp_ig2host.
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We Did Not Use the Exact Solution

There is an exact solution,
cumbersome for many vectors.
Approximation preferred.

We could convert vectors from their appearance in the host to that in the IG, or vice 
versa, by going through coordinate transformations or their inverses to find exact 
solutions.  However, compared to the approximations that we derived, this would be 
time consuming for the LOS to every potential target.

Both the compensating functions require some common parameters that are 
independent of the vectors being compensated.  These common parameters need be 
calculated only once per frame. 
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First part of approximations, 
performed once per frame

IG_earth_curv e
1/a_WGS-84,   or
1/R f or sphere,    or
0.0 f or f lat earth

Obtain IG N & E map scale (N E f or sphere)

Calculate host map scale at current location (assume N = E)

Hence:
IGomap_nscale_f actor = IG_nscale / host_nscale
IGomap_escale_f actor = IG_escale / host_nscale

≠

≈

The first part of the approximations is performed once per frame in the host.  The 
output parameters are:

IG earth curvature,
Northerly ratio of the IG map scale to that of the host,
Corresponding Easterly ratio.

Map scale is defined with respect to a WGS-84 spheroid.

The host vector calculations are performed in flat earth map coordinates, so there is 
no host earth curvature.

Flat earth map projections must be conformal so that at any location East projects 
perpendicular to true North, and Easterly Scale equals Northerly Scale.  Also, the 
projection must be chosen so that the scale is slow changing and close to 1.0 in the 
gaming area. 
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Compensating Host Vector to 
Appearance in IG

comp_host2ig(end_alt, mapned[3], v mapned[3])
{

if (v is_earth_curv e = zero)
{

/* because the two map scale f actors mutually  equal */
v mapned[0] = mapned[0] * IGomap_nscale_f actor;
v mapned[1] = mapned[1] * IGomap_escale_f actor;

v mapned[2] = mapned[2];
}
continued on next slide

If the IG has zero earth curvature the calculations are simple since there is no earth 
curvature drop and the map scales do not vary with bearing.
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Compensating Host Vector to 
Appearance in IG (continued)

comp_host2ig(continued from previous slide)
else   /* v is_earth_curv e   zero */
{

altitude_f actor = 1.0 + end_alt * IG_earth_curv e;
rotate horizontal comps thru merid conv into true N and E;
calculate v is horizontal components by

* (altitude f actor * N or E scale f actor);
rotate v is horizontal comps back to get v mapned[0] & [1];
calculate hor_range_sqd;
earth curv e drop = 0.5 * IG_earth_curv e * hor_range_sqd;
v mapned[2] = mapned[2] + earth_curv e_drop;

}
}

≠

However, with a curved earth IG we must account for the drop due to curvature.  
Also, because (for a sphere) the scale is not independent of bearing we must rotate 
the host vector components from map axes into true N and E before applying the 
scale ratios and then rotating back to get the components in map axes.

Observe that an altitude factor is applied along with the scale ratios.  This altitude 
factor represents the increase in feet per degree with increasing altitude above a 
curved earth, and is based upon the altitude of the end of the vector, not the altitude 
of the sensor. 
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Compensating IG Vector to 
Appearance in Host

comp_ig2host(start_alt, v mapned[3], mapned[3])
{

if (v is_earth_curv e = zero)
{

/* because the two map scale f actors mutually  equal */
mapned[0] = v mapned[0] / IGomap_nscale_f actor;
mapned[1] = v mapned[1] / IGomap_escale_f actor;

mapned[2] = v mapned[2];
}
continued on next slide

Once more, if the IG has zero earth curvature the calculations are simple since there 
is no earth curvature drop and the map scales do not vary with bearing.
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Compensating IG Vector to 
Appearance in Host (continued)

comp_ig2host(continued from previous slide)
else   /* IG earth is curv ed */
{

calculate hor_range_sqd & earth_curv e drop;
mapned[2] = v mapned[2] – earth_curv e_drop;
end_alt = start_alt – mapned[2];
altitude_f actor = 1.0 + end_alt * IG_earth_curv e;
rotate horizontal comps thru merid conv into true N and E;
calculate host horizontal components by

/ (altitude f actor * N or E scale f actor);
rotate host horizontal comps back to get mapned[0] & [1];

}
}

Again, with a curved earth IG we must account for the drop due to curvature and 
(for a sphere) must rotate the vector components into true N and E before applying 
the altitude factor and N and E scale ratios, and then rotate back into map 
coordinates.

The compensating functions were implemented and tested on the A-10 integrated 
with a spherical earth IG.  Tests were run from a known sensor location to a known 
target location, with and without compensating the vectors. 
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Comp_ig2host
Test Results Integrated with Spherical Earth IG

get_tgt_posn uses comp_ig2host

target range about 4.14 nm at bearing about –33.60

Expected error without compensation:
0.60 mil extra depression, about 2.2 mil az
small range error as N stretch and E short   cancel

Actual error without compensation:
0.64 mil extra depression, 2.26 mil az
19.4 ft f urther than known location

Actual error with compensation:
0.035 & 0.044 mil of  AZ & EL, (< 1 pixel)
2.4 f eet closer than known location

≈

get_tgt_posn uses comp ig2host.  Without compensation the alignment and range 
errors matched expectations.  Then function comp_ig2host reduced the alignment 
errors to less than 1 pixel.  The target calculated position being 2.4 feet closer than 
the known location is partly due to the near face of the target being closer than the 
CG.
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Com p_host2ig
Test Results Integrated with Spherical Earth IG

find_tgt_near_mav-gates uses comp_host2ig

target range about 5½ nm on bearing of  about –33½0

Expected misalignment without compensation = 2.3 mil

Actual misalign without comp = 2.1 to 2.3 mil

Actual misalign with comp = 0.15 to 0.23 mil (3 to 4.6 pixels)

find_tgt_near_mav-gates uses comp_host2ig. Without compensation the alignment 
error matched the expectation.  Then function comp_host2ig reduced the error to 
1/10 of the uncompensated error, although still a little larger than in the preceding 
test.

It is not known how much the residual errors reflect the approximate nature of the 
compensation, and how much they reflect noise and other errors in tracking 
accuracy, sensor window definitions, or digitizing of the video in the video capture 
board.

***************************************************************
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The tests were run with the host position and attitude frozen, hence the very accurate 
seeker alignment.  In dynamic tracking conditions the seeker does not track the 
target so accurately, and the gates are not in the middle of the seeker imagery.  
[WHAT SIZE ERRORS?]  For that reason, functions find_tgt_near_mav_gates and 
get_tgt_posn should be modified to account for the gate position in the seeker.

The full equations are not yet implemented in our hosts.  The host map scale is set to 
1.0, as is the scale for an IG flat earth However, the tests were run in an area where 
the scale was exactly 1.0.  In general we train in areas where the map scale is not 
significantly different from 1.0, and provided we use a common map projection 
between host and IG it does not matter if the scale changes.

However, we are now fielding IGs that use a UTM projection so that the map scale 
will vary between the IG and the Lambert Conic host as we move around the 
database.  Therefore we should implement the full equations on our system.

With the host and IG using different flat earth conformal projections of a common 
earth shape, preferably WGS-84, we can compensate the Maverick for scale 
differences.  Out-the-window problems due to scale differences are unlikely to be 
large enough to notice.  However, a lack of visual earth curvature is seen out-the-
window.  For instance, at high altitude the horizon is insufficiently depressed below 
the HUD horizon bar.

An IG using a spherical earth probably causes alignment problems between the out-
the-window and HUD displays that are ignored or attributed to other causes.  
Fortunately we are phasing out spherical earth IGs in our programs.

My personal opinion is that we should use the WGS-84 spheroid in our IGs, and use 
corresponding exact equations in the host.  Then the horizon is seen at the correct 
elevation, the calculations do not need compensation for errors, and we need not 
spend time analyzing the effects of doing things wrong.

In the meantime, we know how to compensate our Maverick equations for 
differences in earth representation between host and IG.


